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Supplementary Figure 1: Effects of modularity on stability. As Figure 4
in the main text, but showing the entire range of Re(λM,1) /Re(λ

M̃,1
) values. Note

that the y−axis is the log2 of the ratio.
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Supplementary Figure 2: Effects of modularity on stability: C = 0.1. As
Supplementary Fig. 1, but for a lower connectance C = 0.1.
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Supplementary Figure 3: Effects of modularity on stability: C = 0.4. As
Supplementary Fig. 1, but for a higher connectance C = 0.4.
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Supplementary Figure 4: Effects of modularity on food webs. As Figure 6
in the main text, but showing the entire range of Re(λM,1) /Re(λ

M̃,1
) values. Note

that the y−axis is the log2 of the ratio.
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Supplementary Figure 5: Effects of modularity on food webs: C = 0.1.
As Supplementary Fig. 4, but for a lower connectance C = 0.1.

5



ρ = − 0.75 ρ = − 0.25 ρ = 0 ρ = 0.25 ρ = 0.75

2

8

2

8

2

8

1

2

4

α
=

0.5
α
=

0.33
α
=

0.25
α
=

0.1

-0.
6

-0.
3 0.0 0.3 -0.

6
-0.

3 0.0 0.3 -0.
6

-0.
3 0.0 0.3 -0.

6
-0.

3 0.0 0.3 -0.
6

-0.
3 0.0 0.3

Modularity Q

St
ab

ilit
y 

Ra
tio

 Γ

Supplementary Figure 6: Effects of modularity on food webs: C = 0.4.
As Supplementary Fig. 4, but for a higher connectance C = 0.4.
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Supplementary Figure 8: Prediction of the spectrum of M . We choose
a parameterization, setting the size S, connectance C, proportion of species in
the first subsystem α, modularity Q, and the parameters describing the bivariate
distribution, µ, σ = 1, and ρ (all reported in the panels). From these parameters,
we can compute Cw and Cw, and then the “effective” parameters µw, µb, σw, σb,
ρw, and ρb (also reported). From these we can derive analytically the support for
the bulk of the eigenvalues, and the location of the outliers (shaded areas). Our
analysis correctly predicts the actual support of the eigenvalue distribution for
the case of equal-sized subsystems (α = 1/2, top row), perfectly modular systems
(Cb = 0, middle row), and perfectly bipartite matrices (Cw = 0, bottom row).
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Supplementary Notes

In what follows, we present an analytical derivation of the limiting distribu-
tion for the eigenvalues of a block-structured random matrix B. The matrix
as size S×S, and the rows/columns (equivalently, the nodes in the networks)
are assigned a group membership, encoded in the vector γ. We consider the
simple case of only two groups, in which each element γi ∈ (1, 2). The diag-
onal elements of B are all equal, and set to −µw. Since the effect of adding
a constant diagonal to a matrix is simply to shift its eigenvalue distribution,
we consider the simplest case of Bii = 0, without loss of generality. The
off-diagonal coefficient of B are random variables satisfying the following:

E[Bij] = 0

E[(Bij)
2] = σ2

w if γi = γj

E[(Bij)
2] = σ2

b if γi 6= γj

E[BijBji] = ρwσ
2
w if γi = γj

E[BijBji] = ρbσ
2
w if γi 6= γj .

(1)

We first derive a closed set of equations describing the spectral distribu-
tion (more precisely, its resolvent, see Section ) for arbitrary values of ρb,
σb, ρw, and σw. We then investigate the cases presented in the main text,
obtaining an explicit solution for the support of the spectrum of B in two
special cases: when the two subsystems have the same size (α = 1/2), and
when interactions only occur between groups (σw = 0).

Prerequisites

Spectral distribution and Hermitian random matrices.

Given a S×S Hermitian random matrix B with eigenvalues λi, the spectral
density is defined as

%(λ) :=
1

S

∑
i

δ (λ− λi) . (2)

In the limit of large S, this quantity converges to a limiting distribution
that, with a slight abuse of notation, we can write as

%(λ) := E (δ (λ− λi)) . (3)
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Our goal is to compute this average over the randomness of the matrix
B. It is useful to introduce the resolvent G, defined as

G(z) :=
1

S

∑
i

1

λi − z
, (4)

or, in terms of averages as

G(z) := E
(

1

S
Tr (B − z)−1

)
. (5)

It is important to recall that, if B is an Hermitian matrix, then all of
its eigenvalues are real. The resolvent is instead a complex function of the
complex variable z. The resolvent and the spectral density are simply related:
we have

G(z) =

∫
dλ

%(λ)

λ− z
, (6)

and

%(λ) = − 1

π
lim
ε→0+

= (G(λ+ iε) . (7)

Quaternions

Complex numbers are defined by introducing the purely imaginary number
i, with the property i2 = −1. All the algebraic properties of complex num-
bers descend from this fact (together with associativity, commutativity and
distributive properties). For instance, the sum of two complex numbers is
given by

(a+ ib) + (x+ iy) = (a+ x) + (b+ y)i , (8)

while the product by

(a+ ib)(x+ iy) = (ax− by) + (bx+ ya)i . (9)

If z = x+ iy, one can introduce the conjugate z̄ = x− iy so that

|z|2 := z̄z = (x− iy)(x+ iy) = x2 + y2 (10)

10



is a real positive number. It is then easy to see that the inverse z−1 can be
written as

z−1 =
z̄

|z|2
. (11)

Complex numbers can be represented as vectors, whose entries correspond
to the real and imaginary part.

Similarly, quaternions can be defined by introducing the symbols i, j, and
k, with the properties

i2 = j2 = k2 = ijk = −1 . (12)

The following multiplication rules hold:

ij = 1 , jk = 1 , ki = 1 , ji = −1 , kj = −1 , ik = −1 . (13)

The main difference between complex numbers and quaternions is that
in the latter multiplication is not commutative: ij 6= ji. A quaternion q can
be written as q = a + bi + cj + dk, where a, b, c and d are real numbers.
More conveniently, by using the identity k = ij, a quaternion can be written
as q = z +wj, where z = a+ bi and w = c+ di are complex numbers. Since
i and j do not commute, it is important to stress that wj 6= jw. We have
instead wj = jw̄.

The sum of two quaternions is simply obtained by applying the associative
property

(z + wj) + (α + βj) = (z + α) + (w + β)j , (14)

while the product can be obtained using the properties of i, j and k explained
above

(z + wj)(α + βj) =zα + wjβj + zβj + wjα

=zα + wβ̄j2 + zβj + wᾱj

=(zα− wβ̄) + (zβ + wᾱ)j .

(15)

Given a quaternion q = a + bi + cj + dk = z + wj (where a, b, c and d
are real numbers, z = a+ bi and w = c+ di), one can define its conjugate

q̄ = a− bi− cj − dk = z̄ − wj , (16)

so that

11



|q|2 := q̄q = qq̄ = |z|2 + |w|2 , (17)

is a real positive number. As in the case of complex numbers, the inverse of
a quaternion q is unique (i.e., q−1q = qq−1 = 1) and can be written as

q−1 :=
q̄

|q|2
. (18)

One can also introduce an element-by-element multiplication, defined as

(z + wj) ◦ (α + βj) = zα + wβj . (19)

Quaternions can be represented as matrices. In particular one can think
of q = z + wj as the 2× 2 matrix

q =

(
z w
w̄ z̄

)
. (20)

All the properties of sum and multiplication explained above simply fol-
lows from matrix algebra. When representing quaternions as matrices, the
element-by-element product ◦ corresponds to the Hadamard product. The
numbers i, j and k, when expressed in matrix notation, turn out to be (pro-
portional to) the three Pauli matrices.

Spectral distribution and non-Hermitian random matrices

In the case of non-Hermitian random matrices, the eigenvalues need not to
be real, and in general lay in the complex plane. Writing the eigenvalues as
λ = x+ yi, the spectral density can be defined as

%(x, y) =
1

S

S∑
i=1

δ (x−< (λi)) δ (y −= (λi)) . (21)

As we saw above, for Hermitian matrices the eigenvalues are real, while
the resolvent is a complex function. In the non-Hermitian case, the eigenval-
ues are complex, and the resolvent is a quaternion function:

G(q) =
1

S

∑
i

(λi − q)−1 , (22)

where q is a quaternion.
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The resolvent can be expressed in terms of the spectral density

G(q) =

∫
dxdy %(x, y) (x+ iy − q)−1 . (23)

On the other hand, the spectral density can be easily obtained from the
resolvent

%(x, y) = − 1

π
lim
ε→0+

<
(
∂

∂λ̄
G(λ+ εj)

)∣∣∣
λ=x+iy

, (24)

where we used the notation

∂

∂λ̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (25)

Cavity method for non-Hermitian random matrices

The cavity method was introduced in statistical physics, to solve models
with tree-like interactions [1]. In the context of random matrices [2, 3], the
cavity method is exact for tree-like matrices and is a good approximation in
the case of sparse matrices. We are, on the other hand, interested in large,
densely connected matrices. Interestingly, for this case of large S and high-
connectivity, the cavity solution is expected to be exact, and it reduces to a
simple set of equations for the resolvent.

A full derivation of the cavity equations can be found in the articles by
Rogers and collaborators [2, 3]. Here we use a slightly different notation
of the cavity equations based on quaternions, rather than Pauli matrices.
The mapping between quaternions and Pauli matrices allows to recover the
original results.

We introduce the resolvent matrix

G = (B− q)−1 , (26)

where q is the quaternion

q = λ+ εj =

(
λ iε
iε λ̄

)
, (27)

while B is a 2S × 2S block-matrix with structure

13



Bij =

(
Bij 0
0 Bji

)
. (28)

Then, the resolvent becomes

G(q) =
1

S

∑
i

Gii(q) . (29)

Assuming that Bij has a tree structure (i.e., there are no closed loops),
one can apply the cavity method [3], obtaining the following equations for
the diagonal entries of G

Gii = −

(
q +

∑
j 6=i

BijG
(i)
jj Bji

)−1
(30)

where G(i) is the resolvent of the matrix obtained by removing row and
column i from B. This can be expressed as

G
(k)
ii = −

(
q +

∑
j 6=i,k

BijG
(i)
jj Bji

)−1
. (31)

Solving iteratively these equations, and using equation 24, one can eval-
uate the spectral density.

Cavity equations for block-structured matrices

When S is large, several important simplifications of equations 30 and 31
occur:

1. At the leading order in S, the right side of equation 30 is identical for
all i in the same group, so we may write Gjj = Gγj .

2. Since S is large, removing a single node i does not change the leading
order behavior of the system, so we can use G

(i)
jj = Gjj = Gγj . This

implies that equation 30 becomes a closed equation and we do not need
equation 31 anymore.
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3. We can apply the law of large numbers to approximate the sum in the
right-hand side of equation 30, obtaining therefore, at the leading order
in S

∑
j 6=i,k

BijG
(i)
jj Bji ≈ E

(∑
j

BijGγjBji

)
(32)

Using equation 28 and the matrix representation of quaternions, we obtain

BijGγjBji =

(
Bij 0
0 Bji

)(
rγj βγj
β̄γj r̄γj

)(
Bji 0
0 Bij

)
=

(
BijBjirγj B2

ijβγj
B2
jiβ̄γj BijBjir̄γj

)
,

(33)
where we used the notation Gγ = rγ + βγj. In the case of two blocks, we
have that, for an arbitrary vector with components zγj ,

E

(∑
j

B2
ijzγj

)
=
∑
j

E
(
B2
ij

)
zγj =

∑
j

(
δγi,γjσ

2
wzγj + (1− δγi,γj)σ2

bzγj
)
(34)

Since we are considering only two blocks, γi assumes only two values.
When considering γi = 1, we have

E

(∑
j

B2
ijzγj

)
= Sασ2

wz1 + S(1− α)σ2
bz2 if γi = 1 , (35)

where α is the fraction of elements belonging to the block 1. For γi = 2, we
obtain instead

E

(∑
j

B2
ijzγj

)
= S(1− α)σ2

wz2 + Sασ2
bz1 if γi = 2 . (36)

Similarly, by using the expectation value of E (BijBji), we find

E

(∑
j

BijBjizγj

)
= Sαρwσ

2
wz1 + S(1− α)ρbσ

2
bz2 if γi = 1 , (37)

and
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E

(∑
j

BijBjizγj

)
= S(1− α)ρwσ

2
wz2 + Sαρσ2

bz1 if γi = 2 . (38)

Substituting in equation 33, we obtain

E

(∑
j

BijGγjBji

)
=

 E
(∑

j BijBjirγj

)
E
(∑

j B
2
ijβγj

)
E
(∑

j B
2
jiβ̄γj

)
E
(∑

j BijBjir̄γj

) 
= Sασ2

w

(
ρwr1 β1
β̄1 ρwr̄1

)
+ S(1− α)σ2

b

(
ρbr2 β2
β̄2 ρbr̄2

)
if γi = 1 .

(39)

By introducing

Σw = Sσ2
w(ρw + j) and Σb = Sσ2

b (ρb + j) , (40)

the previous expression can be written more compactly

E

(∑
j

BijGγjBji

)
= αΣw ◦G1 + (1− α)Σb ◦G2 if γi = 1 . (41)

A similar expression can be obtained in the other case

E

(∑
j

BijGγjBji

)
= (1− α)Σw ◦G2 + αΣb ◦G1 if γi = 2 , (42)

where ◦ is the element by element product.
Armed with the calculations and the simplifications explained above,

equation 30 can be reduced to

G1 = − (q + αΣw ◦G1 + (1− α)Σb ◦G2)
−1 , (43)

and

G2 = − (q + αΣb ◦G1 + (1− α)Σw ◦G2)
−1 . (44)
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The resolvent is then given by G = αG1 + (1 − α)G2, and the spectral
density can be obtained from equation 24. As considered above we can use
the general form

G1 = r1 + β1j , G2 = r2 + β2j , (45)

where r1, r2, β1, β2 are, at least in principle, complex numbers. In practice,
we show that the support of the spectral distribution is defined by the exis-
tence of a solution with real and positive values of β1 and β2. The existence of
such a solution determines the support of the spectral distribution, thereby
bounding the maximum real part of the eigenvalues of B.

Explicit solutions

In the Section above, we considered the general case of B with a block-
structure with two groups and arbitrary α, ρb, σb, ρw, and σw. In this Section,
we provide an explicit solution for the support of the spectrum of B in two
particular cases.

New case 1, α = 1/2.

If α = 1/2, the right sides of equation 43 and 44 become equal, so that

G1 = G2 =: G = r + βj , (46)

where G is a solution of

G = −
(

q +
Σw + Σb

2
◦G

)−1
. (47)

It is natural to introduce

Σ̃ :=
Σw + Σb

2
= Sσ̃2 (ρ̃+ j) , (48)

where

σ̃2 =
σ2
w + σ2

b

2
, ρ̃ =

ρwσ
2
w + ρbσ

2
b

σ2
w + σ2

b

. (49)

Multiplying both sides of equation 50 by its right-hand side, we obtain

G
(
−q− Σ̃ ◦G

)
= 1 , (50)
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Using equation 46 and 27, and setting ε = 0, we obtain

(r + βj)
(
−λ− Sσ̃2(ρ̃r + βj)

)
= 0 , (51)

that, after separating the part multiplied by j from the other part, reduces
to two equations

r
(
−rSρ̃σ̃2 − λ

)
+ S|β|2σ̃2 = 1 , (52)

and

β
(
−rSρ̃σ̃2 − λ− Sr̄σ̃2

)
= 0 . (53)

The spectral density is given by

%(λ) = − 1

π
Re

∂r

∂λ̄
. (54)

If β = 0, equation 52 reduces to

r
(
−rSρ̃σ̃2 − λ

)
= 1 . (55)

Taking the derivative of both sides respect to λ̄,

∂r

∂λ̄

(
−2rSρ̃σ̃2 − λ

)
= 0 , (56)

which implies that ∂r/∂λ̄ = 0. The solution β = 0 corresponds to values of
λ outside the support of the spectral distribution.

If β 6= 0, equation 53 is solved by

r =
1

Sσ̃2

(
− x

1 + ρ̃
+

iy

1− ρ̃

)
, (57)

and then, from equation 52, we obtain

|β|2 =
1

Sσ̃2

(
1− x2

S(1 + ρ̃)2σ̃2
− y2

S(1− ρ̃)2σ̃2

)
. (58)

Since |β|2 is a positive real value, a solution β 6= 0 exists only if the right
side of the previous equation is positive, i.e., when

x2

S(1 + ρ̃)2σ̃2
+

y2

S(1− ρ̃)2σ̃2
< 1 , (59)
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which corresponds to an ellipse in the complex plane. Outside of these region,
the only solution is β = 0 and the spectral density is null. Inside this region
the spectral density can be obtained from equation 57

%λ = − 1

π
Re

∂r

∂λ̄
=

2

πS

1

(1− ρ̃2)
. (60)

In the case α = 1/2, the density is therefore constant inside an ellipse
with semi-axes

rx =

√
S

2
σ̃(1 + ρ̃) , ry =

√
S

2
σ̃(1− ρ̃) . (61)

New case 2, σw = 0.

If σw = 0, equations 43 and 44 reduce to

G1 = − (q + (1− α)Σb ◦G2)
−1 , (62)

and

G2 = − (q + αΣb ◦G1)
−1 , (63)

which can be written as a single equation for G1

G1 =
(
−q + (1− α)Σb ◦ (q + αΣb ◦G1)

−1)−1 . (64)

We obtain therefore

G−11 = −q + (1− α)Σb ◦ (q + αΣb ◦G1)
−1 , (65)

and, by introducing

G1 = r + βj , (66)

we get

r̄ − βj
|r|2 + |β|2

= −λ+ (1− α)Sσ2
b (ρb + j) ◦ λ̄+ αSσ2

bρbr̄ − αSσ2
bβj

|λ+ αSσ2
bρbr|2 − |αSσ2

bβ|2
=

= −λ+ (1− α)Sσ2
b

ρbλ̄+ αSσ2
bρ

2
b r̄ − αSσ2

bβj

|λ+ αSσ2
bρbr|2 − |αSσ2

bβ|2
,

(67)
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where we already considered the limit ε → 0. We obtain two independent
equations

β

(
1

|r|2 + |β|2
− α(1− α)

(Sσ2
b )

2

|λ+ αSσ2
bρbr|2 + |αSσ2

bβ|2

)
= 0 , (68)

and

r̄

|r|2 + |β|2
= −λ+ (1− α)

Sσ2
bρb

|λ+ αSσ2
bρbr|2 + |αSσ2

bβ|2
(λ̄+ αSσ2

bρbr̄) . (69)

As in the case of α = 1/2, β = 0 is always solution. By substituting it in
equation 69, we find that the solution corresponds to a null spectral density.
We can therefore obtain the support of the spectral distribution by studying
the values of λ for which a solution β 6= 0 exists. In order to find the spectral
density we consider

1

|r|2 + |β|2
= α(1− α)

(Sσ2
b )

2

|λ+ αSσ2
bρbr|2 + |αSσ2

bβ|2
, (70)

together with equation 69. This system of equations can be solved, obtaining

|β|2 = − 1

2α2 (ρ2 − 1)2 (x2 + y2)

((
ρ2 − 1

)2 (
2α2

(
ρ2 + 1

)
− α

(
ρ2 + 3

)
+ 1
)

+

2
(
ρ2 + 1

)
x4 + 2x2

(
(2α− 1)ρ

(
ρ2 − 1

)
+ 2

(
ρ2 + 1

)
y2
)

+

+
(
α
(
ρ4 − 1

)
− ρ2 + 2ρx2 − 2ρy2 + 1

)√
(1− 2α)2 (ρ2 − 1)2 + 4x4 + 8x2y2 + 4y4+

+ 2
(
ρ2 + 1

)
y4 − 2(2α− 1)ρ

(
ρ2 − 1

)
y2
)
,

(71)

where we set Sσ2
b = 1 and ρb = ρ, in order to simplify the notation. The

general formula can be obtained by substituting in the latter equation x and
and y with x/(

√
Sσb) and y/(

√
Sσb) respectively. Since the argument of the

square root appearing in equation 71 is always positive, this solution is a
feasible if and only if it is positive. The line |β|2 = 0 defines the boundary
of the support. By imposing |β|2 = 0, after few simplifications, one obtains

0 = (ρ2 − 1)2x4 + (ρ2 − 1)2x4 + 2x2ρ(ρ2 − 1)2 + 2y2ρ(ρ2 − 1)2+

+2x2y2(ρ4 + 6ρ2 + 1) + (ρ2 − 1)2
(
(α− 1)ρ2 + α

) (
αρ2 + (α− 1)

)
.

(72)
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In principle, at this stage we should obtain G2 from equation 63, and
then the support of the spectral density as the union of the regions where
a solution β 6= 0 exists. On the other hand, we can immediately realize
that G2 can be obtained from G1 under the exchange α → (1 − α). Since
equation 72 is invariant under the exchange α → (1 − α), it already defines
the boundary of the spectral density.

Equation 72 can be simplified by considering the change of variable

(a+ ib) = (x+ iy)2 . (73)

When expressed in terms of a and b, equation 72 reduces to

(a− ρ)2
(
1− ρ2

)2
+ b2

(
1 + ρ2

)2
= (1− α)α

(
1 + ρ2

)2 (
1− ρ2

)2
, (74)

which is the equation of an ellipse. The support of the spectral density can
therefore be described as the square root transformation of an ellipse in the
complex plane. After re-introducing the dependence on Sσb, by using the
transformations a → a/(Sσ2

b ) and b → b/(Sσ2
b ), we obtain the equation of

the ellipse:

(a−Sσ2
bρb)

2
(
1− ρ2

)2
+ b2S

(
1 + ρ2

)2
= (Sσ2

b )
2(1−α)α

(
1 + ρ2

)2 (
1− ρ2

)2
,

(75)
which describes an ellipse centered in (Sσ2

bρb, 0), with horizontal semi-axis
Sσ2

b

√
(1− α)α (1 + ρ2), and vertical semi-axis Sσ2

b

√
(1− α)α (1− ρ2).
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